Eigenvalue bounds for radial magnetic bottles on the disk

نویسنده

  • Françoise Truc
چکیده

We consider a Schrödinger operator HD A with a non-vanishing radial magnetic field B = dA and Dirichlet boundary conditions on the unit disk. We assume growth conditions on B near the boundary which guarantee in particular the compactness of the resolvent of this operator. Under some assumptions on an additional radial potential V the operator HD A − V has a discrete negative spectrum and we obtain an upper bound of the number of negative eigenvalues. As a consequence we get an upper bound of the number of eigenvalues of HD A smaller than any positive value λ, which involves the minimum of B and the square of the L2-norm of A(r)/r, where A(r) is the specific magnetic potential defined as the flux of the magnetic field through the disk of radius r centered in the origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erwin Schrr Odinger International Institute for Mathematical Physics Rayleigh{type Isoperimetric Inequality with a Homogeneous Magnetic Field Rayleigh-type Isoperimetric Inequality with a Homogeneous Magnetic Eld

We prove that the two dimensional free magnetic Schrr odinger operator, with a xed constant magnetic eld and Dirichlet boundary conditions on a planar domain with a given area, attains its smallest possible eigenvalue if the domain is a disk. We also give some rough bounds on the lowest magnetic eigenvalue of the disk. Running title: Magnetic Rayleigh-type inequality.

متن کامل

Magneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk

In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theo...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆ + V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii Rupert L. Frank and Barry Simon

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆+ V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold,...

متن کامل

تحول دینامیکی قرص‌های برافزایشی خودگرانشی پلی تروپ با وشکسانی بتا در حضور میدان مغناطیسی چنبره‌ای

In this paper,the effect of troidal magnetic field is studied in standard self-gravitating thin disks with β priscription. By applying the magnetic field, we expect to see different behaviors compared to a non-magnetic field case.The study reveals self-similar solutions for radial infall velocity, rotation velocity, surface density and mass accretion rate. Our results also show that by increasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2012